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LETTER TO THE EDITOR 

A solvable model of quantum discontinuities 

S C Chhajlany 
Physics Depanment, Addis Ababa University, P 0 BOX 32811, Addis Ababa, Ethiopia 

Received 15 October 1991 

Abstract. It is shown that an appropriate triple-well version of the binding potential 
V(x)=ox2+bx4+ex6 (a ,e>O,  b<O, b2>30c) provides a solvable model whereby the 
discontinuous behaviour of the energy eigenvalues of any finite set of  lowest-lying levels 
can be deduced analyiically. The reason for the occurence of such discontinuities will be 
discussed. 

Singular perturbations, even in infinitesimal amounts, can lead to remarkable con- 
sequences. They can do so by creating energetically favourable subsidiary potential 
wells. Following an observation due to Herbst and Simon [ 11 this fact was brought to 
the fore by Calogero [Z]. Varma and co-workers [3] provided further numerical 
confirmation. 

Using model Hamiltonians, Calogero showed that the energy eigenvalues in such 
cases are not necessarily continuous functions of the perturbing couplings. As the 
perturbation is gradually made to vanish, the energy eigenvalues do not tend to those 
of the unperturbed problem. Consequently, when the relevant couplings are ultimately 
switched off from their infinitesimal values, the energies jump abruptly to conform to 
the dictums of the unperturbed Hamiltonian. The system is said to display quantum 
discontinuities. 

Calogero notes further that the occurence of discontinuities is always accompanied 
by a loss of normalizability by the associated wavefunctions. 

Moreover, in all his models, the limiting process forces the subsidiary wells to grow 
infinitely wide. Their minima recede to infinity and their depths either remain fixed 
or diverge. Hence, prior to the discontinuous jump, there is a tendency amongst a 
group of levels to accumulate near the minimum of the relevant subsidiary well. 

In short, under the limiting process, one witnesses a discontinuous behaviour of 
the energies, a loss of normalizability by the wavefunctions and a marked convergence 
of levels near a suitable minimum. Analytically, the discontinuity of only a single 
eigenvalue per potential is deducible in the examples of Calogero. 

We propose a solvable and very instructive model to illustrate the phenomenon of 
discontinuities. In this model the discontinuous behaviour of any finite set of lowest- 
lying levels can be deduced analytically. The question of the apparent loss of normaliza- 
bility will be discussed. No accumulation of levels a la Calogero materializes. 

Our model is a suitable version of the one-dimensional sextic anharmonic potential 
V ( x )  = axz+ bx4+ cx6. The considerations to be presented can be extended straightfor- 
wardly to higher dimensions. Turbiner [4] showed that if the couplings a, b, c ( c >  0 )  
are appropriately tuned, the Hamiltonian develops an intimate connection with an 
underlying SL(2, R)  symmetry. A subset of lowest-lying levels then splits off from the 
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rest and becomes tractable by elementary means. The utility of such solutions has been 
discussed at length in a recent paper [ 5 ] .  In this work, we follow the approach of [ 5 ]  
but adequate details will be provided so as to keep the work self-contained. The 
historical development of such exact solutions is also outlined in this last mentioned 
reference. 

Of immediate interest to us is the case a, c > 0 and b < 0 such that b2> 3ac and 
b, c+O in a manner to be stipulated shortly. The potential has a triple-well structure 
under these conditions. 

Using oscillator scales the Schrodinger equation in dimensionless variables is 

~ + [ &  -x2+Ax4-f12x6]Y = 0, 
dx2 

Here A is positive, 8 is taken positive by convention and the potential is V ( x ) =  
x 2  - Ax*+ p2x6.  Make the following substitutions in (1): 

Y = u(x) exp U =  a.x" 
" = O  

A = Zpy ( 3 )  

with a, = 1, a ,  = 0 for even parity solutions and a, = 0, a ,  = 1 for odd parity solutions. 
Instead of ( 1 )  we now have the three-term relation 

( 4 )  

ak#O ak+2 = akt4 = 0. ( 5 )  

y 2 = 1 + P ( 2 k + 3 ) .  (6) 
The corresponding energy eigenvalues are the roots of the equation ak+2 = 0. These 
can most easily be obtained by expressing akt2 as an (m + 1) x (m + 1 )  determinant as 
explained in [ 5 ] .  The index m equals k / 2  or ( k  - 1 ) / 2  depending on whether k is even 
or odd. There are always (m+ 1) real roots due to the underlying SL(2, R )  symmetry 
[ 4 , 5 ] .  For k even (odd) these represent the lowest (m + 1) eigenvalues for even (odd) 
levels. A given set of solutions ( k  fixed) corresponds to a given potential since both 
p and A can be held fixed. The wavefunctions follow through a repeated use of the 
recursion relation ( 4 )  along with the appropriate parity condition. 

To facilitate the discussion in what follows we explicitly list the first few results. 
(i) k=O:  We recover only the ground state solution with 

( n  + 3 ) ( n  + ~ ) C I , , + ~ +  [ E  + y (Zn+5) ]an+ ,+[  y 2 -  1 - p ( 2 n  + 3 ) ] a .  =O. 

This permits u(x) to be a polynomial of degree k provided 

Conditions ( 5 )  require that 

E O = - Y  y = W  uo= 1 A = 2Py. (7) 

E l  = - 3 y  y = m  U, = x, A = 2Py. (8) 

(ii) k = 1: We have the one-node solution with 

(iii) k = 2: We get the zero and two-node solutions. We shall need them only in 
the p + 0 limit. Accordingly, they can be approximated as 

7 8  E,=-5--  y = l + -  
2 39p uo=1+4x2  

2 (9) 
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and 

(iv) For a general k, we obtain ( m + l )  eigenvalues. Ignoring O ( p )  terms the 
sequence 

- (2k+l) , - (Zk-3) ,  - ( 2 k - 7 ) , . .  ., -1 or -3 (11) 

results, according as k is even or odd. 
The discontinuous behaviour of these energy eigenvalues follows straightforwardly. 

Let p, A + 0 in accord with (3) and (6). The potential V ( x )  + x2 whose energy eigenvalues 
E. = 2n + 1 ,  n = 0 , 1 , 2 , .  . . , do not emerge as the limiting values. A discontinuous jump 
must result as p and A are switched off from their infinitesimal values. 

As p + 0, at first glance, wavefunctions seem to lose the property of normalizability. 
For example, the wavefunction ‘Yo corresponding to uo of (7) tends to exp(+x2/2). A 
little later we shall return to this question and discuss it in detail. 

An amusing fact emerges under the limiting process. All the even (odd) unnormal- 
ized wavefunctions tend to suitable nodeless (one-node) functions as 0, A + 0. The 
receding wells carry the nodes away with them to *CO. As an example, consider the 
two-node function for k = 2. The nodes are at 1x1 = l/p‘f2 and recede to *CO as p ,  A +O. 
In the same limit q 2 ( k  = 2) + V,(k = 0). Such a change of nodal characteristics has 
not been noted previously [2,3]. 

However, there is no accumulation of levels accompanying the limiting process. 
There is, of course, an expected tendency amongst successive even and odd levels to 
become pairwise degenerate. To see this, observe that (for small p )  once a negative 
level appears, its energy from then on is, to an  excellent approximation, a linear 
function of k For example, for k = 1 ,3 ,5 ,  I,. . . E ,  is almost at -3, -7, -11,  -15,. . . 
respectively. Hence for k = 2 ,4 ,6 ,  . . . it should almost be at -5, -9, -13, . . . repectively, 
precisely where 

The reason for the lack of accumulation of levels can be easily understood by 
paying attention to the geometry of the triple-well potential in the limit p ,  A + 0 with 
(3) and (6) satisfied. In this limit both the depth and the width of the outer wells are 

and the width at the E = O  line grows as (2k+3)If2 approximately. For fixed k, they 
remain fixed and finite. Hence no accumulation of levels occurs. For large k the outer 
wells are deep so that pairwise degeneracy of even and odd levels occurs as it does 
for any symmetric deep double well. 

The present model has another distinctive feature. Here, an oscillator-like spectrum 
goes over into an oscillator spectrum despite a discontinuous jump and the accompany- 
ing drastic change in the wavefunctions. 

We now turn to a very illuminating aspect of the results. With exact solutions in 
hand, it is possible to follow accurately the response of a particle, initially in some 
oscillator state, to the infinitesimal perturbation 

is for such k values. 

finite 2nd independent nf ,e 2nd A. m.e depth be!nw the E = D !ine gmws 2s (2.4 + ?) 

- 2 p [ 1 + / 3 ( 2 k + 3 ) ] ’ ” ~ ~ + p ~ ~ ~  p = O+. 
First, we note that a harmonic osciiiator equation formaiiy admits an infinite set 

of nodeless polynomial solutions with weight exp(+x2/2). The corresponding energy 
eigenvalues are E. = - ( 2 n  + 1). n = 0 ,1 ,2 ,  . . . . Obviously, such solutions do not belong 
to the oscillator Hilbert space. 
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However, these are precisely the solutions of the perturbed problem that one seems 
to recover in the limit p = 0. It is tempting then to suggest that the particle responds 
to the switching on of the perturbation as if it were in a suitable non-normalizable 
state of the unperturbed problem. But this simply cannot be true. For p = O  the particle 
has to be in a proper oscillator state. Indeed, there is no real problem. Consider once 
more the ground state function 

yo - exp( $ - $) 
for infinitesimal p. Examining the normalization integral Yz dx for p = O +  we readily 
find that it is dominated by the factor exp(+y2/2P). Hence, it is only proper to rescale 
'Po appropriately by the factor exp(-yz/4p) prior to taking the limit. As p - 0 ,  the 
rescaled function simply disappears. The true solution for the p = 0 case should thus 
be sought from the corresponding Schrodinger equation. Hence, as far as the present 
model is concerned the root cause of the occurrence of discontinuities is nor the loss 
of normalizability by the wavefunctions but their disappearance as p is made to vanish. 
Indeed, there is noching surprising about the disappearance of the state function. The 
potential that is crucially responsible for supporting it, itself disappears abruptly in 
the limit. 

It is also reasonably clear that the basic scenario discussed above is not the product 
of the specific tuning of couplings invoked here. For a fixed small p, the other coupling 
A forms a quasi-discrete set since k is variable. Besides, as we have already seen, once 
a negative level appears, its energy is de facto a linear function of k. Thus we can 
regard k to be a real, positive and continuous parameter. The coupling A would 
accordingly vary continuously. Of course, for k other than an integer the polynomial 
character of the solutions is lost. 

In a situation like this, the failure of conventional perturbation theory is naturally 
to be expected. In essence, perturbation theory operates on the basis that a small 
perturbation implies a small modification of the state function such that, as the 
perturbation is gradually made to vanish, the system smoothly returns to the original 
state. This certainly is not the case here for any non-zero p and A that guarantee the 
energetically favourable configuration of the outer wells. 

As a final remark,we would like to recall our suggestion made recently [51 that 
quasi-exactly-solvable problems are worth far more than they have generally been 
credited for. The present study serves to further strengthen this view. 
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